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Tighter spots of light with superposed orbital-angular-momentum beams
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The possibility of focusing light to an ever tighter spot has important implications for many applications
and fields of optics research, such as nano-optics and plasmonics, laser-scanning microscopy, optical data
storage, and many more. The size of lateral features of the field at the focus depends on several parameters,
including the numerical aperture of the focusing system, but also the wavelength and polarization, phase and
intensity distribution of the input beam. Here, we study the smallest achievable focal feature sizes of coherent
superpositions of two copropagating beams carrying opposite orbital angular momentum. We investigate the
feature sizes for this class of beams not only in the scalar limit, but also use a fully vectorial treatment to discuss
the case of tight focusing. Both our numerical simulations and our experimental results confirm that lateral feature
sizes considerably smaller than those of a tightly focused Gaussian light beam can be observed. These findings
may pave the way for improving the resolution of imaging systems or may find applications in nano-optics
experiments.
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Introduction. The utilization of spatially structured light
beams has proven beneficial in many fields of optics research
([1–3], and references therein). For instance, phase-structured
or polarization-tailored light beams, such as scalar Laguerre-
Gaussian (LG) beams carrying orbital-angular-momentum
(OAM) or cylindrical vector beams, hold great potential in
nanoplasmonics and nanophotonics [4–18], optical manipu-
lation and trapping [1,3,19–21], optical communication and
sensing [22–25], and many more. Very prominent examples
of research areas where structured light has paved the way
for unprecedented enhancements are the fields of imaging
and nanoscopy [26–28]. In the limit of tight focusing of
light beams, the electromagnetic field distribution can become
highly complex in the focal plane [5–8,29]. In this context, the
occurrence of longitudinally oscillating field components or,
more generally, of three-dimensional field distributions gives
rise to a variety of interesting effects and phenomena, including
spin-to-orbit coupling [30], transverse angular momentum
[31–34], the creation of complex polarization topologies
[35] at the nanoscale, and the possibility of focusing light
more tightly, as observed, for instance, for radially polarized
light [4,7].

In this Rapid Communication, we study both theoretically
and experimentally the smallest achievable lateral feature
sizes—in terms of the field structure—of specially structured
light beams created by the superposition of collinearly prop-
agating LG beams of light forming so-called petal beams.
In particular, we investigate such beams not only in the
limit of paraxial propagation, but also use a fully vectorial
treatment to discuss the case of tight focusing. We show that
the smallest achievable feature sizes in such beams can reach
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subwavelength dimensions, and they depend on the OAM
carried by the superposed light beams.

Starting with the simple case of a plane wave impinging on
a lens with circular aperture, the intensity pattern formed in the
focal plane of the lens can be calculated using scalar diffraction
theory as long as the beam is propagating paraxially. It has the
shape of an Airy disk described by a first-order Bessel function
(see, for instance, [18]). The size of this focal intensity pattern
can be quantified by its radius dR measured from the maximum
intensity on-axis to the first null of the intensity distribution.
dR depends on the numerical aperture (NA) of the focusing
lens and the wavelength λ as follows:

dR ≈ 0.61
λ

NA
. (1)

Consequently, this equation can be used to estimate the spot
size (in the scalar limit) for a plane wave focused by a
lens with circular aperture. We note that Eq. (1) is also the
result of applying the famous resolution criterion of Lord
Rayleigh to the imaging of two closely spaced pointlike
emitters [18,36,37], in which case dR refers to the minimum
resolvable distance of the two emitters.

As is customary and for simplicity, we will use Eq. (1)
as a gauge for feature sizes also in the regime of high NA
focusing where the scalar theory has limited validity. To get a
more accurate description of this scheme, vectorial diffraction
theory must be applied, taking into account the polarization
of the illumination and the effect of depolarization upon
focusing [8,29].

Petal beams and their paraxial propagation. A multitude
of different methods capable of generating high-quality light
beams carrying orbital angular momentum [38] have been
discussed and demonstrated to date. Amongst others, methods
based on cylindrical lenses [1], helical phase plates [39] as well
as dielectric, liquid-crystal-based or plasmonic q plates [40,41]
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FIG. 1. (a) Numerically calculated electric energy density (nor-
malized to the maximum value of |E|2) and (b) phase distribu-
tions of an x-polarized petal beam for |l| = 8, λ = 535 nm and
w0 = 0.65 mm.

have been shown. However, the most flexible generation of LG
beams or their superpositions can be realized using spatial light
modulators [42].

If two linearly (x-)polarized LG beams of lowest radial
order carrying OAM of opposite sign (LG0l , LG0−l for l �= 0)
copropagate collinearly, their equally weighted superposition
carries no net angular momentum and forms a ring-shaped
light beam, consisting of 2|l| intensity lobes (petals) along
the azimuthal coordinate. This is a direct consequence of
the inherent azimuthal phase structure of the two beams,
resulting in multiple zero crossings of the electric field
along the ring following a cos2(|l|φ) intensity modulation with
φ the azimuthal coordinate (Fig. 1 for the case of |l| = 8). For
the sake of convenience, we have set the radial index of the
LG modes to 0. Some properties as well as the generation and
application of these so-called cogwheel or petal beams have
been discussed in the literature (see, for instance, [43–49], and
references therein).

The half-distance between neighboring petals (peak-to
valley distance), equivalent to Eq. (1), here denoted as dp

[Fig. 1(a)], can be easily calculated from the ring radius r and
the number 2|l| of petals

dp = 1

2

2πr

2|l| , (2)

for |l| � 2. Strictly speaking, this geometrical derivation of
the half-distance between neighboring petals is only correct in
the limit of large values of |l| or equivalently a large number
of petals. For small values of |l|, dp overestimates the actual
half-distance because it measures it along an arc and not along
a straight line. Therefore, we restrict Eq. (2) to cases where
|l| � 2, because with the case |l| = 2, the beams start to form
ringlike distributions of petals.

At first glance one might be tempted to believe that by
reducing the radius r , e.g., by focusing the petal beam, or
alternatively by keeping the beam radius fixed but increasing
the number of petals 2|l|, arbitrarily small values of dp could
be achieved. However, an arbitrarily large improvement is not
possible as we will show below. From [50–52] it is known that
for a paraxial beam LG0l and, hence, also for the superposition
of LG beams as discussed here, the divergence angle α is
a function of the beam radius r , the wavelength λ, and the
absolute value of the phase charge |l| carried by the individual

beams in the superposition, and reads

tan α = (|l| + 1)
λ

2πr
. (3)

It is worth noting that the divergence angle α of the beam
under investigation might become already considerably large
for high values of |l|, even for beam radii r � λ, hence
necessitating a nonparaxial treatment. However, it is still very
instructive and convenient to retrieve an analytical expression
for dp for the paraxial regime. In the paraxial case, the
small-angle approximation tan α ≈ α ≈ sin α = NA can be
applied. Together with Eqs. (1) and (3), Eq. (2) can be rewritten
for the paraxial case and |l| � 2 to now read

dscalar
p ≈ |l| + 1

4|l|
λ

NA
= |l| + 1

2.44|l|dR . (4)

For the limiting case lim|l|→∞ dscalar
p = dR

2.44 . Consequently,
the smallest feature sizes of a paraxially propagating petal
beam (half the petal spacing) can be smaller than the limit
dR as defined in Eq. (1) by a factor of 1

2.44 . This first simple
result shows that by taking advantage of the azimuthal phase
structure of LG beams and the interference of two such
beams carrying phase vortices of opposite sign, the smallest
observable feature sizes along the azimuthal direction can
indeed be reduced considerably. Nonetheless, this simple
and straightforward calculation immediately demonstrates that
dscalar

p cannot reach arbitrarily small values, not even in the
framework of scalar treatment. The value of dscalar

p saturates
very quickly for increasing values of |l| [see also Fig. 3(a) for
the case of high NA]. In addition, it should be noted here that
this reduction of petal sizes along the azimuthal direction also
causes an increase of the radial petal size (Fig. 1).

Tight focusing of petal beams. As already mentioned
above, the divergence angle of petal beams, or equivalently
LG0l beams in the superposition, depends on the value |l|
[50–52]. Therefore, it seems to be appropriate to also study
the parameter dp in the limit of strong focusing, using a fully
vectorial and nonparaxial description [29]. In this context it
is well known that upon tight focusing of a light beam, its
spatial field distributions may change significantly [4,7,29,35],
accompanied by the appearance of longitudinal field compo-
nents, i.e., components of the electric field oscillating along the
propagation direction. This shows that the polarization state
and spatial structure of a light beam has a crucial influence on
the shape and size of the focal spot.

Using vectorial diffraction theory, we therefore calculated
the focal field distributions of tightly focused linearly x-
polarized petal beams. Without the loss of generality, we only
show the components of the electric field here. Figure 2(a)
shows the corresponding numerical results of the focal field
distributions for the input beam shown in Fig. 1, focused with
a microscope objective of NA = 0.9. The relative size of the
input beam for this example (|l| = 8) and for all other cases
of |l| was chosen such that the corresponding beams filled the
entrance aperture of the objective lens (for |l| = 8, beam waist
w0 = 0.65 mm). The total electric energy density distribution
|E|2 still shares some similarities with the original input beam,
but the intensity lobes along the ring are not equally strong
anymore. In addition and even more importantly, the visibility
of the intensity lobes located close to the y axis is significantly
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FIG. 2. (a) Focal distributions of the electric energy density of
the individual electric field components |Ex |2, |Ey |2, and |Ez|2 as
well as the total electric energy density |E|2 of a tightly focused
petal-like beam with |l| = 8, λ = 535 nm, w0 = 0.65 mm (Fig. 1). All
distributions were numerically calculated using vectorial diffraction
theory [29] and normalized to the maximum of the total electric
energy density. (b) Schematic of the experimental setup (similar to
Ref. [12]). An x-polarized Gaussian beam of wavelength 535 nm
is converted into a petal beam by means of a liquid-crystal-based
spatial light modulator (SLM; phase-only). The beam is focused by
a microscope objective with a numerical aperture (NA) of 0.9. A
150-nm-diameter gold bead is raster scanned using a three-
dimensional piezo stage through the focal plane of the light beam
to determine the focal distribution. The transmitted and forward-
scattered light is collected by a high-NA (1.3) oil-immersion lens and
measured with a photodiode. (c) An experimental scan showing the
total electric energy density distribution of the beam under study as
shown in (a).

reduced. Both effects are dominantly caused by the appearance
of longitudinal field components peaking on the y axis,
where the dominant x component of the electric field is zero
[see |Ez|2 in Fig. 2(a)]. In addition, a comparatively weak
crossed in-plane component |Ey |2 is also observed. All
distributions are shown in Fig. 2(a). It is also worth noting here
that, if the input beam was chosen to be circularly polarized, the
longitudinal electric field component would form a symmetric
ring of intensity lobes, consequently reducing the visibility
of all lobes in the total electric energy density along the full
ring [49]. By choosing linearly polarized light at the input,
this problem can be circumvented and regions of optimum
visibility with respect to the electric field distribution can be
found as discussed above.

FIG. 3. (a) Dependence of peak-to-valley distances on |l| re-
trieved from the analytical paraxial treatment (dscalar

p ; green) and from
vectorial diffraction theory (dvector

p ; red) for λ = 535 nm focused
with a microscope objective of NA = 0.9. The experimental data
(blue) is plotted for the experimentally accessible range of values for
|l| = 0–40. The inset shows the dependence of the beam radius in the
focus on |l|. (b) Distributions of the total electric energy density |E|2
of tightly focused petal beams for the special cases of |l| = 0,1,2.

From the numerically calculated focal field distributions,
we now retrieve the peak-to-valley distances in the regions of
highest visibility (distance measured from the x axis to the
neighboring electric field maximum of |E|2), here denoted as
dvector

p [see also Fig. 2(a)]. Alternatively, the circumference
of the ringlike intensity distributions can be retrieved from the
calculated data and, subsequently, divided by twice the number
of petals, as was done in the paraxial treatment discussed
above.

Because the total electric energy density or the electric
field intensity distribution for small |l| values evolves from
a single or dual-lobe pattern into a ringlike distribution of
intensity maxima, we need to define how the values of dvector

p

are determined for those cases. In Fig. 3(b), we therefore
show the corresponding focal distributions of |E|2 for the
cases of |l| = 0 (fundamental Gaussian beam; x-polarized
HG00 beam), |l| = 1 (first-order Hermite-Gaussian beam;
x-polarized HG01 beam) and |l| = 2 (x-polarized HG11 beam).
For a linearly polarized Gaussian beam (|l| = 0), the distance
dvector

p is measured from the optical axis to the first zero
crossing of the electric field along the y axis perpendicular
to the input polarization [Fig. 3(b)]. Similarly, we retrieve this
value for the cases |l| = 1 and |l| = 2.

The retrieved values of dvector
p as a function of |l| are plotted

in Fig. 3(a) (red) with a step size of 1 (5) for |l| < 35 (|l| � 35)
and NA = 0.9, λ = 535 nm, together with dR calculated from
Eq. (1) (black solid line). The beam waist parameter w0 for
each input beam was chosen such that the outer radius, at
which the modulus of the electric field |E| reaches a value
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of max(|E|)/e, was coinciding with the edge of the entrance
aperture of the focusing lens [see sketch in Fig. 2(b)]. In
addition, we also include the corresponding values of dscalar

p

[see also Eq. (4)] for |l| � 2, resulting from the scalar treatment
(green), here applied to the case of high NA.

As can be seen, the values of dscalar
p , which result from

the scalar, fully paraxial and analytical treatment of the petal
beams, predict smaller peak-to-valley distances in comparison
to the actual distances dvector

p retrieved from a fully vectorial
calculation. In fact, the same holds true for dvector

p ||l|=0 (funda-
mental Gaussian beam), which can be compared to dR . Also
here, the approximate scalar theory [Eq. (1)] predicts a smaller
value. However, in both theoretical cases, the peak-to-valley
distances decrease with increasing |l| before they eventually
saturate. This analysis reveals that for the wavelength and the
focusing parameters used in this example, the peak-to-valley
distance reaches a minimum value dvector

p ≈ 1
2.25dR for |l| � 1.

This minimum value was retrieved from an extrapolation of
the data for dvector

p shown in Fig. 3(a). As mentioned already,
this limit is different from the aforementioned value dscalar

p =
1

2.44dR for large values of |l|, resulting from the paraxial
treatment. In Fig. 3(a) (inset), we also plot the dependence of
the beam (ring) radius r on |l|. For both theoretical treatments
(paraxial and nonparaxial), a linear dependence of the beam
radius on |l| is found. In other words, the beam diameter
or radius is growing linearly with |l|. However, the smallest
observable feature sizes of the beam, dvector

p and dscalar
p (petal

sizes), in both regimes decrease with increasing |l| until they
reach a limit, which is far below the value of dR in Eq. (1).
From this perspective, Eq. (4) can be seen as an adapted version
of Eq. (1) for petal beams taking into account the spatial
structure of light. It is worth noting here that the observed
minimal lateral feature size for petal beams of the shown type
are even considerably smaller than for those cases discussed in
the literature, for instance for tightly focused radially polarized
light beams [7], and they show higher visibility.

Experimental realization. To experimentally verify our
theoretical findings, we performed scan measurements for
tightly focused petal beams (|l| = [0,40]). In our custom-built
setup [see [12] and Fig. 2(b)], a linearly x-polarized Gaussian
beam at a wavelength of λ = 535 nm was converted into a
petal beam, i.e., a superposition of two collinearly propagating
LG0l and LG0−l beams, using a liquid-crystal-based phase-
only reflective spatial light modulator (SLM) [42,53,54] in a
single-pass configuration. The beam was then focused with a
microscope objective (NA = 0.9). The focal electric energy
density distribution was raster-scanned by a gold nanoparticle
of diameter 150 nm placed on a glass substrate. To compare
experimental and numerical results, the waist of the input
beam was chosen appropriately to fill the aperture of the
objective lens, as described before. The focused beam was
scanned by changing the position of the gold nanoprobe using
a three-dimensional piezo stage. For each position of the
particle relative to the optical axis within the focal plane,

the transmitted and forward-scattered light was collected by
a second oil-immersion objective (NA = 1.3) and measured
with a photodiode. Both microscope lenses were aligned
confocally. The chosen plasmonic subwavelength particle is
perfect for probing the local electric field. While scanning
the beam, the particle is excited depending on its relative
position. Consequently, a raster-scan measurement results in a
two-dimensional scan image, where a signal decrease is in first
approximation proportional to the local electric energy density
and, therefore, contains information about its spatial distribu-
tion. It should be noted here that for the chosen wavelength
and particle size, a significant contribution of a quadrupole
to the scattering of the particle is expected. Furthermore, a
more advanced experimental method as described in Ref. [55]
should be used if the full field information (amplitudes and
phases of individual field components) of the beams needs to
be measured. In Fig. 2(c), we show the experimental result
of a petal beam for |l| = 8 [equivalent to the case shown
in Fig. 2(a)]. The experimental scan result is in very good
agreement with the numerically calculated distribution shown
in Fig. 2(a). The fact that the longitudinal field components
appear more pronounced in comparison to the transverse field
components is a direct consequence of the different collection
efficiencies (defined by the lower objective) for light emitted
from a longitudinally or transversally oscillating dipolar or
quadrupolar mode excited in the particle.

Following the aforementioned procedure, measurements
for (petal) beams with |l| = [0,40] were performed, and
the peak-to-valley distances were retrieved in the regions of
highest visibility, equivalent to the retrieval of dvector

p . The
corresponding data is plotted in Fig. 3(a) (blue). The exper-
imentally retrieved values are also in very good agreement
with the data obtained before, using vectorial diffraction
theory.

Conclusions. In our study, we examine the spatial dis-
tribution of the electric energy density of tightly focused
petal beams theoretically and experimentally. Both the scalar
as well as the fully vectorial theoretical treatment of the
investigated scheme predict a significant reduction of the
minimum observable feature sizes (peak-to-valley distances)
in comparison to the case of a plane wave. This theoretical part
of our study emphasizes the importance of a fully vectorial
and nonparaxial theory for describing the propagation of the
beams under investigation, especially for large values of |l|.
In addition, our experimental study confirms the theoretical
predictions. Such beams might find applications in nano-
optics and plasmonics. If the field distribution of the input
beams superposed to form a petal beam was also tailored in
polarization in addition to the phase, the focal field could be
modified even further.
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Opt. Commun. 179, 1 (2000).

[6] K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
[7] R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901

(2003).
[8] R. Dorn, S. Quabis, and G. Leuchs, J. Mod. Opt. 50, 1917

(2003).
[9] J. Kindler (née Müller), P. Banzer, S. Quabis, U. Peschel, and

G. Leuchs, Appl. Phys. B 89, 517 (2007).
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